

 Navigation

 	
 index

 	clustergrammer-py stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/clustergrammer-py/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/clustergrammer-py/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	clustergrammer-py stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		clustergrammer-py stable documentation »

Clustergrammer Python Module

The python module clutergrammer.py, takes a tab-separated matrix file as input (see format here), calculates clustering, and generates the visualization json (see format here [https://github.com/MaayanLab/clustergrammer-json]) for clustergrammer.js [https://github.com/MaayanLab/clustergrammer]. See an example workflow below:

Installation

The module can be used by downloading the source code here or by installing with pip [https://pypi.python.org/pypi?:action=display&name=clustergrammer]:

python 2
$ pip install clustergrammer

python 3
$ pip3 install clustergrammer

Example Workflow

from clustergrammer import Network
net = Network()

load matrix file
net.load_file('txt/rc_two_cats.txt')

calculate clustering
net.make_clust(dist_type='cos',views=['N_row_sum', 'N_row_var'])

write visualization json to file
net.write_json_to_file('viz', 'json/mult_view.json')

The script make_clustergrammer.py is used to generate the visualization jsons (see json [https://github.com/MaayanLab/clustergrammer/tree/master/json] directory of the clustergrammer repo) for the examples pages on the clustergrammer [https://github.com/MaayanLab/clustergrammer] repo. To visualize your own data modify the make_clustergrammer.py script on the clustergrammer [https://github.com/MaayanLab/clustergrammer] repo.

Jupyter Notebook Examples

Clustergrammer-Widget Example

Clustergrammer can be used as a notebook extension widget. To install the widget use

python 2
$ pip install clustergrammer_widget

python 3
$ pip3 install clustergrammer_widget

Within the Jupyter/IPython notebook the widget can be run using the following commands

import the widget
from clustergrammer_widget import *
from copy import deepcopy

load data into new network instance and cluster
net = deepcopy(Network())
net.load_file('rc_two_cats.txt')
net.make_clust()

view the results as a widget
clustergrammer_notebook(network = net.export_net_json())

The clustergrammer_widget [https://github.com/MaayanLab/clustergrammer-widget] repo contains the source code for the widget.

IFrame Clustergrammer-web Results

The python module can make an IFramed visualization in Jupyter/Ipython Python notebooks. See Jupyter_Notebook_Example.ipynb for and example notebook or the example workflow below:

upload a file to the clustergrammer web app and visualize using an Iframe
from clustergrammer import Network
from copy import deepcopy
net = deepcopy(Network())
link = net.Iframe_web_app('txt/rc_two_cats.txt')
print(link)

Clustergrammer Python Module API

The python module, clustergrammer.py, allows users to upload a matrix, normalize or filter data, and make a visualization json for clustergrammer.js.

The python module works in the following way. First, data is loaded into a data state (net.dat). Second, a clustered visualization json is calculated and saved in the viz state (net.viz). Third, the visualization object is exported as a json for clustergrammer.js. These three steps are shown in the example workflow as: net.load_file, net.make_clust, and net.write_json_to_file.

The data state is similar to a Pandas Data Frame. A matrix also can be loaded directly as a Data Frame or exported.

Below are the available functions in the Network object:

load_file(filename)

Load a tsv file, given by filename, into the Network object (stored as net.dat).

load_tsv_to_net(file_buffer)

Load a file buffer directly into the Network object.

df_to_dat()

This function loads a Pandas Data Frame into the net.dat state. This allows a user to directly load a Data Frame rather than have to load from a file.

swap_nan_for_zero()

Swap all NaNs in a matrix for zeros.

filter_sum(inst_rc, threshold, take_abs=True)

This is a filtering function that can be run before make_clust that performs a permanent filtering on rows/columns based on their sum. For instance, to filter the matrix to only include rows with a sum above a threshold, 100, do the following: net.filter_sum('row', threshold=100). Additional, filtered views can also be added using the views argument in make_clust.

filter_N_top(inst_rc, N_top, rank_type='sum')

This is a filtering function that can be run before make_clust that performs a permanent filtering on rows/columns based on their sum/variance and return the top N rows/columns with the greatest (absolute value) sum or variance. For instance, to filter a matrix with >100 rows down to the top 100 rows based on their sum do the following: net.filter_N_top('row', N_top=100, rank_type='sum'). This is useful for pre-filtering very large matrices to make them easier to visualize.

filter_threshold(inst_rc, threshold, num_occur)

This is a filtering function that can be run before make_clust that performs a permanent filterin on rows/columns based on whether num_occur of their values have an absolute value greater than threshold. For instance, to filter a matrix to only include rows that have at least 3 values with an absolute value above 10 do the following: net.filter_threshold('row', threshold=3, num_occur=10). This is useful for filtering rows/columns that have the same or simlar sums and variances.

make_clust()

Calculate clustering and produce a visualization object (stored as net.viz). The optional arguments are listed below:

		dist_type='cosine' The distance metric used to calculate the distance between all rows and columns (using Scipy). The defalt is cosine distance.

		run_clustering=True This determines whether clustering will be calculated. The default is set to True. If False is given then a visualization of the matrix in its original ordering will be returned.

		dendro=True This determines whether a dendrogram will be included in the visualization. The default is True.

		linkage_type='average' This determines the linkage type used by Scipy to perform hierarchical clustering. For more options (e.g. ‘single’, ‘complete’) and information see hierarchy.linkage documentation [http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.cluster.hierarchy.linkage.html].

		views=['N_row_sum', 'N_row_var'] This determines which row-filtered views will be calculated for the clustergram. Filters can be based on sum or variance and the cutoffs can be defined in absolute numbers (N) or as a percentage of the number of rows (pct). These views are available on the front-end visualization using the sliders. The defalt is ['N_row_sum', 'N_row_var']. The four options are:
		N_row_sum This indicates that additional row-filtered views should be calculated based on the sum of the values in the rows with cutoffs defined by absolute number. For instance, additional views will be calculated showing the top 500, 250, 100, 50, 20, and 10 rows based on the absolute sum of their values.

		pct_row_sum This indicates that additional row-filtered views should be calculated based on the sum of the values in the rows with cutoffs defined by the percentage of rows. For instance, additional views will be calculated showing the top 10%, 20%, 30%, ... rows based on the absolute sum of their values.

		N_row_var This indicates that additional row-filtered views should be calculated based on the variance of the values in the rows with cutoffs defined by absolute number. For instance, additional views will be calculated showing the top 500, 250, 100, 50, 20, and 10 rows based on the variance of their values.

		pct_row_sum This indicates that additional row-filtered views should be calculated based on the variance of the values in the rows with cutoffs defined by the percentage of rows. For instance, additional views will be calculated showing the top 10%, 20%, 30%, ... rows based on the variance of their values.

		sim_mat=False This determines whether row and column similarity matrix visualizations will be calculated from your input matrix. The default is False. If it is set to True, then the row and column distance matrices used to calculate hierarchical clustering will be convered to similarity matrices and clustered. These visualization jsons will be stored as net.sim['row'] and net.sim['col']. These can be exporeted for visualization using net.write_json_to_file('sim_row', 'sim_row.json') and an example of this can be seen in make_clustergrammer.py.

write_json_to_file(net_type, filename, indent='no-indent')

This writes a json of the network object data, either net.viz or net.dat, to a file. Choose 'viz' in order to write a visualization json for clustergrammer.js, e.g. net.write_json_to_file('viz','clustergram.json')

write_matrix_to_tsv(filename, df=None)

This write the matrix, stored in the network object, to a tsv file. Optional row/column categories are saved as tuples. See tuple_cats.txt or export.txt for examples of the exported matrix file format.

export_net_json(net_type, indent='no-indent')

This exports a json string from either net.dat or net.viz. This is useful if a user wants the json, but does not want to first write to file.

dat_to_df()

Export a matrix that has been loaded into the Network object as a Pandas Data Frame.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

RELEASE.html

 Navigation

 		
 index

 		clustergrammer-py stable documentation »

Publication Instructions

http://peterdowns.com/posts/first-time-with-pypi.html

Updating Instructions

First, release a new version and push to github repo.

Then update the setup.py file to reflect the new version.

adding a tag

git tag 0.1 -m “Adds a tag so that we can put this on PyPI.”

run registering and updating

How to upgrade

		After commiting changes, make a new release tag and change the setup.py file to reflect this

		Then push with tags
git push github master –tags

		run the test registering and uploading using
python setup.py register -r pypitest
python setup.py sdist upload -r pypitest

python setup.py register -r pypi
python setup.py sdist upload -r pypi

		upgrade package
pip install clustergrammer –upgrade
pip show clustergrammer

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

search.html

 Navigation

 		
 index

 		clustergrammer-py stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

